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In this work we study the process of replacing gas in porous media considering convective motion of one of the gases and 
dependence of diffusion coefficients on the pressure in them. We have given the formulas to calculate the diffusion coefficients, 
which depend on the coefficients of interdiffusion of gases and pressure. The numerical experiment shows that the convective 
component has a significant impact on the process of mixing gases. Key words: gas replacing, porous media, diffusion 
convective component 

There are little papers dedicated to the investigation of a multi-component gas in porous environment, which is 
primarily explained by the specificity and complexity of the tasks. Modeling these processes usually leads to the 
need for solving the nonlinear differential equations in partial derivatives or their systems with variable, in particular 
discontinuous, ratios under conditions of substantial uncertainty. The movement of a two-component gas mixed in a 
porous environment is a typical convection-diffusion process. During the gas movement in a porous process the 
convective component is an order higher than the diffuse one. Upon small convective velocity and in view of the gas 
mixing process the process of convection-diffusion must be considered simultaneously. 

The diffusion of two gases without convective component is explained by the differential equation  

  (1) 

for given boundary conditions, where the D parameter means the coefficient of mutual diffusion of A and B gases. 
Many formulas are developed for its determination, including [1] 

where p, T is the pressure and temperature in the system, mA and mB – are the gas masses, sA and sB are the 
parameters of the Lennard-Jones potential. 

Indian mathematicians, Saxena M. and Saxena S. proposed the following modified formula of Sazerland for the 
computation of the mutual diffusion of DAB gases (с m 2/ с) [1]: 



where VA, VB, TA and TB are the critical volumes (cm3/mol) and temperature (K) of gases, p is the pressure in 
atmospheres, TA,B=(TA TB)0,5. For nonpolar gases A=0.022023 and B=1.1756, while for systems consisting of a 
combination of polar and nonpolar gases A=0.022023 and B=1.90116. If the self-diffusion coefficients of DAA and 
DBB gases are known, then 

Let’s consider a cylindrical source of gas injection, uniformly distributed along the axis. The area of the PSG 
reservoir is modeled with a cylinder divided by cylindrical surfaces into appropriate sub-areas filled with different 
gases and their mixture (Fig. 1): zone I is filled with the extracted gas, zone II occurs as a result of the displacement 
of the existing gas with a pumped gas, resulting in the jamming of a part of the pores, and area III is filled with 
injected gas. Then the equation for determination of the distribution of gas pressure in each subzone will look as 
follows [2,3] 

(2) 

where r is the radius vector drawn from the well center according to Leybenzon: 

with υ = 0.002 m/s 

Here p0 and p2 are the initial value of the pressure and the pressure at the area boundary respectively. The 
solution of equation (2) with constant boundary conditions is given in [2-4]. 

Fig. 1. PSG layer area distribution 



Fig. 2. The dependence of the diffusion coefficient cz from time t at the distance of r= 32 m

If the pressure distribution is known, the velocity of the gas movement is determined as follows: 

  (3)

Here μ is the absolute viscosity of gas, and k is the permeability of the layer occupied with gas. Equation (1) takes 
place in the second zone only if its boundary is not shifted. Otherwise, you must consider the velocity of the 
boundary movement. During the displacement of one gas with another the diffusion process should be considered, 
taking into account the convective component, i.e. the velocity of the first zone movement. Then the problem is 
reduced to solution of the diffusion equation with the convective component 

under appropriate boundary conditions. Here υ is the velocity of the gas in the first zone determined with formula 
(3). For numerical analysis of the influence of the convective component on the diffusion process a simpler model is 
considered, namely the gas diffusion in the layer with l thickness, described by the equation 

   (4)

under appropriate boundary conditions recorded as c1(r) =c(r, 0), c2(r) =c(r,l) c3(t) =c(0, t). 

For consistency of conditions it is required to satisfy the equality of c1(0) =c3(0). 

Solution of equation (4) will be searched using the Laplace transformation. For constant coefficients equation (4) 
will look as follows: 

         (5) 

Here b= Υ /D, p1= S /D, c11=c(r, 0) /D. We assume that the b and p1 parameters are constant. The general solution 
of a homogeneous equation will look as follows: 



where 

A partial solution of the differential equation (5) depends on its right side, in particular, the method of constants 
variation leads to relation: 

If c11 function is identically constant, then the partial solution will be cch = - cn / XlX2. At sustainable 
boundary conditions the general solution of the problem will be as follows 

The last equality it is marked as 

Fig. 3. The dependence of the diffusion coefficient cz on distance for time t = 400s and different values of the convective velocity υ ={0.004; 0.003; 0.002} m/s, 
where curve 1 represents the velocity of υ = 0.004 m/s, curve 2 υ = 0.003 m/s, and curve 3 υ = 0.002 m/s 



Fig. 4. The dependence of the diffusion coefficient cz on distance for time t= 400s and different values of the convective velocity υ = {0.001; 0.0005; 0} m/s, 
where curve 1 represents the velocity of υ = 0.001 m/s, curve 2 υ = 0.0005 m/s, and curve 3 υ = 0 m/s 

The general solution in Laplace images is as follows: 

Let’s mark 

Then  

The original image F(a, b, c) will be sought by its decomposition into simple fractions  

Whereas 

then the original image is 



where  

is a function. 

Then       

and finally 

If the convective component is absent, i.e. υ = 0, then 

and 

and  

From these solutions it is easy to get component Δs, which is describes the effect of convective motion on the 
diffusion coefficient: 

Table 1  

The value of the diffusion coefficient for different values of the time t and coordinate r with υ = 0.002 m/s and T= 10,000 K 

t/r 0 8 16 24 32 40

0 0.6 0.3728 0.5591 0.6508 0.6800 0.9

2500 0.5582 0.6136 0.6966 0.7897



5000 0.5688 0.6280 0.7087 0.7960

7500 0.5702 0.6299 0.7103 0.7968

10000 0.5704 0.6302 0.7105 0.7969

Table 2  

The value of the diffusion coefficient for different values of the time t and coordinate r with υ = 0.005 m/s and T=400 K 

t/r 0 8 16 24 32 40

0 0.3429 0.4466 0.5288 0.5906

100 0.4211 0.4618 0.5440 0.6663

200 0.4559 0.4781 0.5601 0.7000

300 0.4762 0.4987 0.5804 0.7196

400

0.5

0.4909 0.5185 0.6001 0.7338

0.9

The results were verified t during the computational experiments for different values of the input parameters. The 
convective gas movement velocity in underground storage reservoir was calculated by the formula (3), and the 
diffusion coefficient was determined as shown by the above formulas. The results of calculations are presented in 
tables and fig. (2-4) for the following values of the parameters l=40 m, D=0.05 (cm2/s), c(r, 0) = 0.06, c(0, t) = 0.6, 
c(l,t) = 0 9. 

The results shown in Fig. 5 and 6 correspond to the following values of parameters l=32 m, D= 0.05 (cm2/s) c(r, 
0) = 0.9, c(0, t) = 0.9, c(l,t) = 0.

The analysis of the results shows that the convective component has a significant impact on the gas diffusion 
process. Despite the fact that the gas flow velocity in porous environments is small, its growth results in increased 
concentration of admixture. 

Fig. 6. Dependence of the diffusion coefficient cz on distance for time t= 400s and different values of the convective velocity υ = {0.004; 0.002; 0} m/s, 
where curve 1 represents the velocity of υ = 0.004 m/s, curve 2 υ = 0.002 m/s, curve 3 υ = 0 m/s 
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